Wednesday, November 28, 2018

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 77

Determine the equation of the normal line to the parabola $y = x^2 - 5x + 4$ which is parallel to the line
$x - 3y = 5$


$
\begin{equation}
\begin{aligned}
\text{Given:}&&& \text{Parabola}\quad & &y = x^2-5x+4\\
\phantom{x}&&& \text{Line} \quad & & x - 3y = 5
\end{aligned}
\end{equation}
$


Solving for slope$(m)$ using the equation of the line

$
\begin{equation}
\begin{aligned}
x - 3y &= 5
&& \text{Transpose } x \text{ to the right side}\\
\\
-3y &= 5-x
&& \text{Divide both sides by -3}\\
\\
\frac{-3y}{-3} &= \frac{5-x}{-3}
&& \text{Simplify the equation}\\
\\
y &= \frac{x-5}{3} \quad \text{ or } \quad y = \frac{1}{3}x - \frac{5}{3}
&& \text{By using the general formula of the equation of the line}\\
\\
y &= mx + b
&& \text{Slope}(m) \text{ is the numerical coefficient of }x\\
\\
m & = \frac{1}{3}
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
y &= x^2 - 5x + 4\\
\\
y'&= \frac{d}{dx} (x^2) - 5 \frac{d}{dx} (x) = \frac{d}{dx}(4)
&& \text{Derive each term}\\
\\
y'&= 2x - (5) (1) + 0
&& \text{Simplify the equation}\\
\\
y' &= 2x - 5
\end{aligned}
\end{equation}
$


Solving for the equation of the normal line,

$
\begin{equation}
\begin{aligned}
m_N &= \frac{-1}{m}
&& \text{Slope of the normal line is equal to the negative reciprocal to the slope of the line which is } \frac{1}{3}\\
\\
m_N &= \frac{-1}{\frac{1}{3}}\\
\\
m_N &= -3
\end{aligned}
\end{equation}
$


Let $y' = m_N$

$
\begin{equation}
\begin{aligned}
y' & = m_N = 2x - 5
&& \text{Substitute the value of slope}(m_N)\\
\\
-3 & = 2x - 5
&& \text{Add 5 to each sides}\\
\\
2x &= 5 - 3
&& \text{Combine like terms}\\
\\
2x &= 2
&& \text{Divide both sides by 2}\\
\\
\frac{2x}{2} &= \frac{2}{2}
&& \text{Simplify the equation}
\end{aligned}
\end{equation}
$


Using equation of the parabola

$
\begin{equation}
\begin{aligned}
y & = x^2 - 5x + 4
&& \text{Substitute the value of } x\\
\\
y & = (1)^2 - 5(1)+4
&& \text{Simplify the equation}\\
\\
y & = 0
\end{aligned}
\end{equation}
$


Using point slope form

$
\begin{equation}
\begin{aligned}
y - y_1 &= m(x-x_1)
&& \text{Substitute value of } x,y \text{ and slope}(m)\text{ of the line}\\
\\
y - 0 &= \frac{1}{3}
&& \text{Simplify the equation}
\end{aligned}
\end{equation}
$


The equation of the normal line is $\displaystyle y = \frac{x-1}{3}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...