Tuesday, October 2, 2018

lim_(x->1) (x^a - 1)/(x^b-1) a,b !=0 Evaluate the limit, using L’Hôpital’s Rule if necessary.

Given to solve,
lim_(x->1) (x^a - 1)/(x^b-1)
as x->1 then the lim_(x->1) (x^a - 1)/(x^b-1) =0/0 form
so upon applying the L 'Hopital rule we get the solution as follows,
as for the general equation it is as follows
lim_(x->a) f(x)/g(x) = 0/0 or (+-oo)/(+-oo) then by using the L'Hopital Rule we get  the solution with the  below form.
lim_(x->a) (f'(x))/(g'(x))
 
so , now evaluating
lim_(x->1) (x^a - 1)/(x^b-1)
= lim_(x->1) ((x^a - 1)')/((x^b-1)')
= lim_(x->1) (a(x^(a-1)))/((b(x^(b-1))))
now plugging the value of  x = 1 then we get
= lim_(x->1) (ax^(a-1))/((bx^(b-1)))
= (a(1)^(a-1))/((b(1)^(b-1)))
= a/b

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...