Tuesday, October 16, 2018

Precalculus, Chapter 7, 7.4, Section 7.4, Problem 56

x^3/((x+2)^2(x-2)^2)
Let x^3/((x+2)^2(x-2)^2)=A/(x+2)+B/(x+2)^2+C/(x-2)+D/(x-2)^2
x^3/((x+2)^2(x-2)^2)=(A(x+2)(x-2)^2+B(x-2)^2+C(x-2)(x+2)^2+D(x+2)^2)/((x+2)^2(x-2)^2)
x^3/((x+2)^2(x-2)^2)=(A(x+2)(x^2-4x+4)+B(x^2-4x+4)+C(x-2)(x^2+4x+4)+D(x^2+4x+4))/((x+2)^2(x-2)^2)
x^3/((x+2)^2(x-2)^2)=(A(x^3-4x^2+4x+2x^2-8x+8)+B(x^2-4x+4)+C(x^3+4x^2+4x-2x^2-8x-8)+D(x^2+4x+4))/((x+2)^2(x-2)^2)
x^3/((x+2)^2(x-2)^2)=(A(x^3-2x^2-4x+8)+B(x^2-4x+4)+C(x^3+2x^2-4x-8)+D(x^2+4x+4))/((x+2)^2(x-2)^2)
x^3/((x+2)^2(x-2)^2)=(x^3(A+C)+x^2(-2A+B+2C+D)+x(-4A-4B-4C+4D)+8A+4B-8C+4D)/((x+2)^2(x-2)^2)
:.x^3=x^3(A+C)+x^2(-2A+B+2C+D)+x(-4A-4B-4C+4D)+8A+4B-8C+4D
equating the coefficients of the like terms,
A+C=1
-2A+B+2C+D=0
-4A-4B-4C+4D=0
8A+4B-8C+4D=0
Now we have to solve the above four equations to get the solutions of A,B,C and D.
Rewrite the third equation as,
-4(A+C)-4B+4D=0
substitute the expression of ( A+C) from the first equation in the above equation,
-4(1)-4B+4D=0
-4B+4D=4
4(-B+D)=4
-B+D=1
D=1+B
Express C in terms of A from first equation,
C=1-A
Substitute the expressions of C and D in the second equation,
-2A+B+2(1-A)+1+B=0
-2A+B+2-2A+1+B=0
-4A+2B=-3 (equation 5)
Substitute the expressions of C and D in the fourth equation,
8A+4B-8(1-A)+4(1+B)=0
8A+4B-8+8A+4+4B=0
16A+8B=4
4(4A+2B)=4
4A+2B=1 (equation 6)
Solve equation 5 and 6 to get the solutions of A and B,
Add equation 5 and 6,
4B=-3+1
4B=-2
B=-2/4
B=-1/2
Plug the value of B in the equation 5,
-4A+2(-1/2)=-3
-4A-1=-3
-4A=-3+1
-4A=-2
A=1/2
Now plug the values of A and B in the expressions of C and D,
C=1-1/2
C=1/2
D=1+(-1/2)
D=1/2
:.x^3/((x+2)^2(x-2)^2)=1/(2(x+2))-1/(2(x+2)^2)+1/(2(x-2))+1/(2(x-2)^2)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...