Tuesday, October 23, 2018

College Algebra, Chapter 8, 8.2, Section 8.2, Problem 46

Determine the parts of intersection of the pair of ellipses.

$
\left\{
\begin{equation}
\begin{aligned}
\frac{x^2}{16} + \frac{y^2}{9} &= 1\\
\\
\frac{x^2}{9} + \frac{y^2}{16} &= 1
\end{aligned}
\end{equation}
\right.
$

Sketch the graphs on the same axes and label the points of intersection.
By using elimination method,

$
\left\{
\begin{equation}
\begin{aligned}
\frac{x^2}{144} + \frac{y^2}{81} &= \frac{1}{9} && \frac{1}{9} \times \text{Equation 1}\\
\\
-\frac{x^2}{144} - \frac{y^2}{256} &= -\frac{1}{16} && -\frac{1}{16} \times \text{Equation 2}
\end{aligned}
\end{equation}
\right.
$


$
\qquad
\begin{equation}
\begin{aligned}
\hline\\
\frac{y^2}{81} - \frac{y^2}{256} &= \frac{1}{9} - \frac{1}{16} && \text{Add}\\
\\
\frac{175y^2}{20736} &= \frac{7}{144} && \text{Simplify}\\
\\
y &= \pm \frac{12}{5} = \pm 2.4
\end{aligned}
\end{equation}
$

Now we back substitute the value of $y$ in either of the equation. So if $\displaystyle y = \pm\frac{12}{5}$, then

$
\begin{equation}
\begin{aligned}
\frac{x^2}{16} + \frac{\left( \pm \frac{12}{5} \right)^2}{9} &= 1\\
\\
x &= \pm \frac{12}{5} = \pm 2.4
\end{aligned}
\end{equation}
$

Therefore, the parts of intersections are $(2.4, 2.4), (2.4,-2.4),(-2.4,2.4)$ and $(-2.4,-2.4)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...