Saturday, October 13, 2018

Calculus of a Single Variable, Chapter 8, 8.6, Section 8.6, Problem 33

intx/(x^2-6x+10)^2dx
Let's rewrite the integrand as,
=1/2int(2x)/(x^2-6x+10)^2dx
=1/2int(2x-6+6)/(x^2-6x+10)^2dx
=1/2[int(2x-6)/(x^2-6x+10)^2dx+int6/(x^2-6x+10)^2dx] --------------------(1)
Now let' evaluate each of the above two integrals separately,
int(2x-6)/(x^2-6x+10)^2dx
Let's apply integral substitution:u=x^2-6x+10
=>du=(2x-6)dx
=int1/u^2du
=intu^(-2)du
Now from the integer tables:intu^ndu=u^(n+1)/(n+1)+C
=u^(-2+1)/(-2+1)
=-1/u
Substitute back u=x^2-6x+10
=-1/(x^2-6x+10) -----------------------------(2)
Now let's evaluate the second integral,
int6/(x^2-6x+10)^2dx
Take the constant out,
=6int1/(x^2-6x+10)^2dx
Complete the square of the term in the denominator.
=6int1/((x-3)^2+1)^2dx
Let's apply integral substitution:u=x-3
=>du=dx
=6int1/(u^2+1^2)^2du
Now use the following from the integration tables:
int1/(a^2+-u^2)^ndu=1/(2a^2(n-1))[u/(a^2+-u^2)^(n-1)+(2n-3)int1/(a^2+-u^2)^(n-1)du]
=6{1/(2(1)^2(2-1))[u/(1^2+u^2)^(2-1)+(2(2)-3)int1/(1^2+u^2)^(2-1)du]}
=6{1/2[u/(1+u^2)+int1/(1^2+u^2)du]}
Now from the integration table:int1/(a^2+u^2)du=1/aarctan(u/a)+C
=6{1/2[u/(1+u^2)+arctan(u/1)]}
=(3u)/(1+u^2)+3arctan(u)
Substitute back u=x-3
=(3(x-3))/(1+(x-3)^2)+3arctan(x-3)
=(3x-9)/(1+x^2-6x+9)+3arctan(x-3)
=(3x-9)/(x^2-6x+10)+3arctan(x-3) -------------------------(3)
Plug back the results of the integrals 2 and 3 in 1
int1/(x^2-6x+10)^2dx=1/2[-1/(x^2-6x+10)+(3x-9)/(x^2-6x+10)+3arctan(x-3)]
=1/2[(3x-9-1)/(x^2-6x+10)+3arctan(x-3)]
=1/2[(3x-10)/(x^2-6x+10)+3arctan(x-3)]
=(3x-10)/(2(x^2-6x+10))+3/2arctan(x-3)
Add a constant C to the solution,
=(3x-10)/(2(x^2-6x+10))+3/2arctan(x-3)+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...