Wednesday, October 17, 2018

Calculus: Early Transcendentals, Chapter 4, 4.8, Section 4.8, Problem 24

x^5-3x^4+x^3-x^2-x+6=0
To solve this, using Newton's method, apply the formula:

x_(n+1)=x_n- (f(x_n))/(f'(x_n))
Let the function be:

f(x) =x^5-3x^4+x^3-x^2-x+6
Then, take its derivative.
f'(x) =5x^4-12x^3+3x^2-2x-1

Then, plug-in f(x) and f'(x) to the formula.
x_(n+1) = x_n - (x_n^5-3x_n^4+x_n^3-x_n^2-x_n+6)/(5x_n^4-12x_n^3+3x_n^2-2x_n-1)

To get the initial value of x, refer to the graph of the function. (See attached figure.)
Notice that curve has three x values when f(x)=0. These are near x=-1, x=1 and x=3. These will be our initial values for x.
Let's consider solve for the first zero.
x_1=-1
x_(2) = x_1 - (x_1^5-3x_1^4+x_1^3-x_1^2-x_1+6)/(5x_1^4-12x_1^3+3x_1^2-2x_1-1) =-1.047619047
x_3= x_2 - (x_2^5-3x_2^4+x_2^3-x_2^2-x_2+6)/(5x_2^4-12x_2^3+3x_2^2-2x_2-1) =-1.044517237
x_4 = x_3 - (x_3^5-3x_3^4+x_3^3-x_3^2-x_3+6)/(5x_3^4-12x_3^3+3x_3^2-2x_3-1)=-1.044503071
x_5 = x_4 - (x_4^5-3x_4^4+x_4^3-x_4^2-x_4+6)/(5x_4^4-12x_4^3+3x_4^2-2x_4-1)=-1.044503071
Now, we have two approximations that have same eight decimal places. Thus, one of the solution is approximately x=-1.04450307 .
Next, let's solve for the second zero.
x_1 = 1
x_2 = x_1 - (x_1^5-3x_1^4+x_1^3-x_1^2-x_1+6)/(5x_1^4-12x_1^3+3x_1^2-2x_1-1)=1.428571428
x_3 = x_2 - (x_2^5-3x_2^4+x_2^3-x_2^2-x_2+6)/(5x_2^4-12x_2^3+3x_2^2-2x_2-1)=1.336197712
x_4 = x_3 - (x_3^5-3x_3^4+x_3^3-x_3^2-x_3+6)/(5x_3^4-12x_3^3+3x_3^2-2x_3-1) =1.332589426
x_5 = x_4 - (x_4^5-3x_4^4+x_4^3-x_4^2-x_4+6)/(5x_4^4-12x_4^3+3x_4^2-2x_4-1)=1.332583155
x_6 = x_5 - (x_5^5-3x_5^4+x_5^3-x_5^2-x_5+6)/(5x_5^4-12x_5^3+3x_5^2-2x_4-1)=1.332583155
Now that we have two approximations that agree with eight decimal places, then one of the solution is approximately x=1.332583155.
Next, let's solve for the third zero.
x_1 = 3
x_2 = x_1 - (x_1^5-3x_1^4+x_1^3-x_1^2-x_1+6)/(5x_1^4-12x_1^3+3x_1^2-2x_1-1) =2.792079207
x_3 = x_2 - (x_2^5-3x_2^4+x_2^3-x_2^2-x_2+6)/(5x_2^4-12x_2^3+3x_2^2-2x_2-1)=2.715701083
x_4 = x_3 - (x_3^5-3x_3^4+x_3^3-x_3^2-x_3+6)/(5x_3^4-12x_3^3+3x_3^2-2x_3-1) =2.705675033
x_5 = x_4 - (x_4^5-3x_4^4+x_4^3-x_4^2-x_4+6)/(5x_4^4-12x_4^3+3x_4^2-2x_4-1) =2.705512135
x_6 = x_5 - (x_5^5-3x_5^4+x_5^3-x_5^2-x_5+6)/(5x_5^4-12x_5^3+3x_5^2-2x_4-1)=2.705512093
x_7 = x_6 - (x_6^5-3x_6^4+x_6^3-x_6^2-x_6+6)/(5x_6^4-12x_6^3+3x_6^2-2x_6-1)=2.705512093
Now, we have two approximations that have same eight decimal places. Thus, one of the solution is approximately x=2.705512093.
Therefore, the approximate solution ofx^5-3x^4+x^3-x^2-x+6=0 are
x={-1.04450307 ,1.332583155,2.705512093}.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...