Saturday, October 13, 2018

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 48

Find $y'$ if $\ln x y = y \sin x$.


$
\begin{equation}
\begin{aligned}

& \text{if } y = \ln xy = y \sin x, \text{ then by taking the derivative implicitly we have.. }
\\
\\
& \frac{\displaystyle \frac{d}{dx} (xy) }{xy} = \frac{d}{dx} (y \sin x)
\\
\\
& \frac{\displaystyle x \cdot \frac{d}{dy} (y) \frac{dy}{dx} + y(1) }{xy} = y \cos x + \sin x \cdot \frac{d}{dy} (y) \frac{dy}{dx}
\\
\\
& \frac{\displaystyle x \frac{dy}{dx} + y}{xy} = y \cos x + \sin x \frac{dy}{dx}
\\
\\
& x \frac{dy}{dx} + y = xy^2 \cos x+ xy \sin x \frac{dy}{dx}
\\
\\
& y - xy^2 \cos x = xy \sin x \frac{dy}{dx} - x \frac{dy}{dx}
\\
\\
& y (1 - xy \cos x) = x (y \sin x - 1) \frac{dy}{dx}
\\
\\
& \frac{dy}{dx} = \frac{y (1 - xy \cos x)}{x (y \sin x - 1)}



\end{aligned}
\end{equation}
$


Recall that the first derivative is equal to the slope of the tangent line at some point.

Thus, at point $(2, 0)$,


$
\begin{equation}
\begin{aligned}

y' =& \frac{3(2)^2}{2^3 - 7}
\\
\\
y' =& 12

\end{aligned}
\end{equation}
$


Therefore, the equation of the tangent line to the curve can be determined by using the point slope form.


$
\begin{equation}
\begin{aligned}

y - y_1 =& m (x - x_1)
\\
\\
y - 0 =& 12 (x - 2)
\\
\\
y =& 12 x - 24

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...