Friday, October 12, 2018

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 60

Find $\displaystyle \lim \limits_{x \to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$



$
\begin{equation}
\begin{aligned}

& \lim \limits_{x \to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} \cdot \frac{\sqrt{6 - x} + 2}{\sqrt{6 - x} + 2} = \lim \limits_{x \to 2} \frac{6 - x - 4}{(\sqrt{3-x} - 1)(\sqrt{6 -x } + 2)}
&& \text{ Multiply both numerator and denominator by $\sqrt{6 - x} + 2$ and simplify.}\\
\\
& \lim \limits_{x \to 2} \frac{2 - x}{(\sqrt{3 - x} - 1)(\sqrt{6 - x + 2})} \cdot \frac{\sqrt{3 - x} + 1}{\sqrt{3 - x } + 1}
= \lim \limits_{x \to 2} \frac{(2 - x)(\sqrt{3 - x} + 1)}{(3 - x - 1)(\sqrt{6 - x} + 2)}
&& \text{ Multiply both numerator and denominator by $\sqrt{3 - x} + 1$ and simplify.}\\
\\
& \lim \limits_{x \to 2} \frac{\sqrt{3 - x} + 1}{\sqrt{6 - x} + 2} = \frac{\sqrt{3 - 2} + 1}{\sqrt{6 - 2} + 2}
\quad = \frac{\sqrt{1}+1}{\sqrt{4}+2} \quad = \frac{2}{4} \quad =\frac{1}{2}
&& \text{ Substitute the value of $x$ and simplify}\\
\\
&\fbox{$\lim \limits_{x \to 2} \displaystyle \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} = \frac{1}{2}$}

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...