Sunday, August 5, 2018

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 10

Find the exact value of $\displaystyle \cos \left( \tan^{-1} 2 + \tan^{-1} 3 \right)$
By applying the sum of angles for cosine,
$\cos (A + B) = \cos A \cos B - \sin A \sin B$
Let the values of right triangle be...




We have,
$\displaystyle \tan A = \frac{\text{opposite}}{\text{adjacent}} = 2$
And,
$ \tan B = 3$
So,
$A = \tan^{-1} (2)$ and $B = \tan^{-1} (3)$
We know that $\displaystyle \cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{5}}$

and $\displaystyle \sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{2}{\sqrt{5}}$
Similarly with $B$,

$\displaystyle \cos B = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{10}}$ and $\displaystyle \sin A = \frac{3}{\sqrt{10}}$
Thus,
$\cos (A + B) = \cos A \cos B - \sin A \sin B$

$
\begin{equation}
\begin{aligned}
\cos \left( \tan^{-1} (2) + \tan^{-1} (3) \right) &= \left( \frac{1}{\sqrt{5}} \right) \left( \frac{1}{\sqrt{10}} \right) - \left( \frac{2}{\sqrt{5}} \right) \left( \frac{3}{\sqrt{10}} \right)\\
\\
&= \frac{-5}{5\sqrt{2}}\\
\\
&= \frac{-1}{\sqrt{2}}\\
\\
&= \frac{-\sqrt{2}}{2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...