Determine the functions $f \circ g, \quad g \circ f, \quad f \circ f$ and $g \circ g$ and their domains if $f(x) = x^2$ and $g(x) = \sqrt{x-3}$
For $f \circ g$
$
\begin{equation}
\begin{aligned}
f \circ g &= f(g(x)) && \text{Definition of } f \circ g\\
\\
f \circ g &= \left( \sqrt{x-3} \right)^2 && \text{Definition of } g\\
\\
f \circ g &= x -3 && \text{Definition of } f
\end{aligned}
\end{equation}
$
The domain of the function is $(-\infty, \infty)$
For $g \circ f$
$
\begin{equation}
\begin{aligned}
g \circ f &= g(f(x)) && \text{Definition of } g \circ f\\
\\
g \circ f &= \sqrt{(x^2)-3} && \text{Definition of } f\\
\\
g \circ f &= \sqrt{x^2 - 3} && \text{Definition of } g
\end{aligned}
\end{equation}
$
Since the function involves square root we want
$
\begin{equation}
\begin{aligned}
x^2 -3 &\geq 0\\
\\
x^2 &\geq 3\\
\\
x &\geq \pm \sqrt{3}
\end{aligned}
\end{equation}
$
Thus, the domain is $[-\sqrt{3},\infty)$
For $f \circ f$
$
\begin{equation}
\begin{aligned}
f \circ f &= f(f(x)) && \text{Definition of } f \circ f\\
\\
f \circ f &= (x^2)^2&& \text{Definition of } f\\
\\
f \circ f &= x^4 && \text{Definition of } f
\end{aligned}
\end{equation}
$
The domain of the function is $(-\infty,\infty)$
For $g \circ g$
$
\begin{equation}
\begin{aligned}
g \circ g &= g(g(x)) && \text{Definition of } g \circ g\\
\\
g \circ g &= \sqrt{\sqrt{x-3}-3} && \text{Definition of } g\\
\end{aligned}
\end{equation}
$
Since the equation involves square root, we want
$
\begin{equation}
\begin{aligned}
\sqrt{x-3} - 3 &\geq 0 && \text{Add }3 \\
\\
\sqrt{x-3} &\geq 3 && \text{Square both sides}\\
\\
x- 3 &\geq 9 && \text{Add } 3\\
\\
x &\geq 12
\end{aligned}
\end{equation}
$
Thus, the domain of $g \circ g$ $[12,\infty)$
Monday, August 6, 2018
College Algebra, Chapter 3, 3.6, Section 3.6, Problem 38
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
No comments:
Post a Comment