Wednesday, August 22, 2018

College Algebra, Chapter 7, 7.2, Section 7.2, Problem 18

Solve the matrix equation $5(X - C) = D$ for the unknown matrix $X$, where

We solve for $X$


$
\begin{equation}
\begin{aligned}

5(X - C) =& D
&& \text{Given equation}
\\
\\
5X - 5C =& D
&& \text{Distributive Properties of Scalar Multiplication}
\\
\\
5X =& D + 5C
&& \text{Add the matrix $5C$ to each side}
\\
\\
X =& \frac{1}{5} (D + 5C)
&& \text{Multiply each side by the scalar } \frac{1}{5}

\end{aligned}
\end{equation}
$


So,


$
\begin{equation}
\begin{aligned}

X =& \frac{1}{5} \left( \left[ \begin{array}{cc}
10 & 20 \\
30 & 20 \\
10 & 0
\end{array} \right] + 5 \left[ \begin{array}{cc}
2 & 3 \\
1 & 0 \\
0 & 2
\end{array} \right] \right)

&& \text{Substitute the matrices $D$ and $C$}
\\
\\
X =& \frac{1}{5} \left( \left[ \begin{array}{cc}
10 & 20 \\
30 & 20 \\
10 & 0
\end{array} \right] + \left[ \begin{array}{cc}
10 & 15 \\
5 & 0 \\
0 & 10
\end{array} \right] \right)
&& \text{Simplify matrix } C
\\
\\
X =& \frac{1}{5} \left[ \begin{array}{cc}
20 & 35 \\
35 & 20 \\
10 & 10
\end{array} \right]
&& \text{Add matrices}
\\
\\
X =& \left[ \begin{array}{cc}
\displaystyle \frac{20}{5} & \displaystyle \frac{35}{5} \\
\displaystyle \frac{35}{5} & \displaystyle \frac{20}{5} \\
\displaystyle \frac{10}{5} & \displaystyle \frac{10}{5}
\end{array} \right]
&& \text{Multiply the scalar } \frac{1}{5}
\\
\\
X =& \left[ \begin{array}{cc}
4 & 7 \\
7 & 4 \\
2 & 2
\end{array} \right]
&&

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...