Monday, August 27, 2018

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 18

2∫(-2excos(2x))dx+2exsin(2x)-1excos(2x)=2(-2∫1excos(2x)dx)+2exsin(2x)-1excos(2x)
Use integration by parts:
int (u)dv = uv-intvdu

Let u = cos(2x) and dv = dx/e^x
Then,
du = -2sin2xdx
v = int(e^-x)dx = -1/e^x

Thus,
int (1/e^xcos(2x))dx =(cos(2x)⋅(-1/e^x)−int((-1/e^x)⋅(-2sin(2x))dx))=(-int(2/e^xsin(2x)dx-1/e^xcos(2x)))
Use the constant multiple rule
-int(2/e^xsin(2x)dx-1/e^xcos(2x))=-(2int(1/e^xsin(2x)dx)-1/e^xcos(2x))
Use integration by parts again for the first part
Let u=sin(2x) and dv=dx/e^x
Then,
du = 2cos(2x)dx and v = int(e^-x)dx = -1/e^-x
Integral becomes

-2int(1/e^xsin(2x)dx-1/e^xcos(2x))=-2(sin(2x)(-1/e^x)-int((-1/e^x)2cos(2x)dx))
-1/e^xcos(2x)=-2(-int((-2/e^xcos(2x))dx-1/e^xsin(2x)))-1/e^xcos(2x)
Apply constant multiple rule
2int((-2/e^xcos(2x))dx)+2/e^xsin(2x)-1/e^xcos(2x)=2(-2int(1/e^xcos(2x)dx))+2/e^xsin(2x)-1/e^xcos(2x)
Simplify
int(1/e^xcos(2x))dx=1/(5e^x)(2sin(2x)-cos(2x))+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...