Wednesday, August 22, 2018

Single Variable Calculus, Chapter 2, 2.2, Section 2.2, Problem 21

Estimate the value of the $\displaystyle \lim \limits_{x \to 0} \frac{\sqrt{x + 4} - 2}{x}$ by using a table of values.



Let the values of $x$ be...

$
\begin{equation}
\begin{aligned}


\begin{array}{|c|c|}
\hline\\
x & f(x) \\
\hline\\
-0.1 & 0.251582 \\
-0.01 & 0.250156 \\
-0.001 & 0.250016 \\
-0.0001 & 0.250001 \\
-0.00001 & 0.25 \\
0.00001 & 0.249999 \\
0.0001 & 0.249998 \\
0.001 & 0.249984 \\
0.01 & 0.249844 \\
0.1 & 0.248457\\
\hline
\end{array}

\end{aligned}
\end{equation}
$



The table shows that as $x$ approaches 0 from both directions the
value of the limit approaches 0.25 or $\displaystyle \frac{1}{4}$.


$
\begin{equation}
\begin{aligned}

\displaystyle \lim \limits_{x \to 0} \frac{\sqrt{x + 4} - 2}{x} =& \frac{\sqrt{.000001 +4} - 2}{.000001} = \frac{1}{4}\\

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...