Find the equation of the tangent line and normal line of the curve $\displaystyle y = \frac{\sqrt{x}}{x + 1}$ at the point $(4,0.4)$
Required:
Equation of the tangent line and the normal line at $P(4,0.4)$
Solution:
$
\begin{equation}
\begin{aligned}
\qquad y' = m_T =& \frac{(x + 1) \displaystyle \frac{d}{dx} (x^{\frac{1}{2}}) - \left[ (x^{\frac{1}{2}}) \frac{d}{dx} (x + 1) \right] }{(x + 1)^2}
&& \text{Using Quotient Rule}
\\
\\
\\
\qquad y' = m_T =& \frac{(x + 1) \displaystyle \left[ \frac{1}{2 (x^{\frac{1}{2}})} \right] - (x^{\frac{1}{2}})(1)}{(x + 1)^2}
&& \text{Simplify the equation}
\\
\\
\\
\qquad y' = m_T =& \frac{\displaystyle \frac{x + 1}{2 (x^{\frac{1}{2}})} - (x^{\frac{1}{2}})}{(x + 1)^2}
&& \text{Get the LCD}
\\
\\
\\
\qquad y' = m_T =& \frac{\displaystyle \frac{x + 1 - 2x}{2(x^{\frac{1}{2}})}}{(x + 1)^2}
&& \text{Combine like terms}
\\
\\
\\
\qquad y' = m_T =& \frac{-x + 1}{2 \sqrt{x} (x + 1)^2}
&& \text{}
\\
\\
\\
\qquad m_T =& \frac{-x + 1}{2 \sqrt{x} (x + 1)^2}
&& \text{Substitute the value of $x$}
\\
\\
\\
\qquad m_T =& \frac{-4 + 1}{2 \sqrt{4} (4 + 1)^2}
&& \text{Simplify the equation}
\\
\\
\\
\qquad m_T =& \frac{-3}{100}
&& \text{}
\\
\end{aligned}
\end{equation}
$
Solving for the equation of the tangent line:
$
\begin{equation}
\begin{aligned}
\qquad y - y_1 =& m_T(x - x_1)
&& \text{Substitute the value of the slope $(m_T)$ and the given point}
\\
\\
\qquad y - 0.4=& \frac{-3}{100} (x - 4)
&& \text{Multiply $\large \frac{-3}{100}$ in the equation}
\\
\\
\qquad y - 0.4 =& \frac{-3x + 12}{100}
&& \text{Add $0.4$ to each sides}
\\
\\
\qquad y =& \frac{-3x + 12}{100} + 0.4
&& \text{Simplify the equation}
\\
\\
\qquad y =& \frac{-3x + 12 + 40}{100}
&& \text{Combine like terms}
\\
\\
\qquad y =& \frac{-3x + 52}{100}
&& \text{Equation of the tangent line to the curve at $P (4,0.4)$}
\end{aligned}
\end{equation}
$
Solving for the equation of the normal line
$
\begin{equation}
\begin{aligned}
m_N =& \frac{-1}{m_T}
&&
\\
\\
m_N =& \frac{-1}{\displaystyle \frac{3}{100}}
&&
\\
\\
m_N =& \frac{100}{3}
&&
\\
\\
y - y_1 =& m_N (x - x_1)
&& \text{Substitute the value of slope $(m_N)$ and the given point}
\\
\\
y - 0.4 =& \frac{100}{3} (x - 4)
&& \text{Multiply $\large \frac{100}{3}$ to the equation}
\\
\\
y - 0.4 =& \frac{100 x - 400}{3}
&& \text{Add 0.4 to each sides}
\\
\\
y =& \frac{100x - 400}{3} +0.4
&& \text{Simplify the equation}
\\
\\
y =& \frac{100 - 400 + 1.2}{3}
&& \text{Combine like terms}
\\
\\
y =& \frac{100x - 398.8}{3}
&& \text{Equation of the normal line at $P(4,0.4)$}
\end{aligned}
\end{equation}
$
Friday, August 24, 2018
Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 56
Subscribe to:
Post Comments (Atom)
Why is the fact that the Americans are helping the Russians important?
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
Lionel Wallace is the subject of most of "The Door in the Wall" by H.G. Wells. The narrator, Redmond, tells about Wallace's li...
-
In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...
-
There are a plethora of rules that Jonas and the other citizens must follow. Again, page numbers will vary given the edition of the book tha...
-
Robinson Crusoe, written by Daniel Defoe, is a novel. A novel is a genre defined as a long imaginative work of literature written in prose. ...
-
The poem contrasts the nighttime, imaginative world of a child with his daytime, prosaic world. In the first stanza, the child, on going to ...
-
Friar Lawrence plays a significant role in Romeo and Juliet's fate and is responsible not only for secretly marrying the two lovers but ...
-
Hello! This expression is already a sum of two numbers, sin(32) and sin(54). Probably you want or express it as a product, or as an expressi...
No comments:
Post a Comment