Thursday, August 30, 2018

Single Variable Calculus, Chapter 1, 1.3, Section 1.3, Problem 29

Find the functions $f+g, f-g, f \cdot g,$ and $f/g$ and their domains

$f(x) = x^3 + 2x^2, \qquad g(x) = 3x^2-1$


$
\begin{equation}
\begin{aligned}

@ f+g\\
f+g =& f(x)+g(x) && \text{ Substitute the given values of the function $f(x)$ and $g(x)$}\\
f + g=& x^3+2x^2+3x^2-1 && \text{ Combine like terms }
\end{aligned}
\end{equation}
$


$\boxed{f + g = x^3+5x^2-1 } $

$\boxed{\text{ The domain of this function is :} (-\infty,\infty)}$



$
\begin{equation}
\begin{aligned}
@f-g\\
f-g =& f(x)-g(x) && \text{ Substitute the given values of the function $f(x)$ and $g(x)$}\\
f-g =& x^3+2x^2-(3x^2-1) && \text{ Simplify the equation}\\
f-g =& x^3+2x^2-3x^2+1 && \text{ Combine like terms}
\end{aligned}
\end{equation}
$


$\boxed{f-g = x^3-x^2+1}$

$\boxed{\text{ The domain of this function is :} (-\infty,\infty)}$



$
\begin{equation}
\begin{aligned}
@f \cdot g\\
f \cdot g =& f(x).g(x) && \text{ Substitute the given values of the function $f(x)$ and $g(x)$}\\

f \cdot g =& (x^3+2x^2)(3x^2-1) && \text{ Using FOIL method}
\end{aligned}
\end{equation}
$


$\boxed{ f \cdot g = 3x^5 + 6x^4 - x^3 - 2x^2}$
$\boxed{\text{ The domain of this function is :} (-\infty,\infty)}$


$
\begin{equation}
\begin{aligned}

@f/g\\
f/g =& f(x)/g(x) && \text{ Substitute the given values of the function $f(x)$ and $g(x)$}\\



\end{aligned}
\end{equation}
$


$\displaystyle f/g = \frac{x^3+2x^2}{3x^2-1}$
$\boxed{\text{ The domain of this function is :} (-\infty, -\sqrt{\frac{1}{3}}) \bigcup(-\sqrt{\frac{1}{3}},\sqrt{\frac{1}{3}}) \bigcup (\sqrt{\frac{1}{3}},\infty)}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...