Saturday, August 25, 2018

f(x)=cosx Prove that the Maclaurin series for the function converges to the function for all x

Maclaurin series is a special case of Taylor series which is centered at c=0 . We follow the formula:
f(x)=sum_(n=0)^oo (f^n(0))/(n!)x^n
or
f(x) = f(0)+ f'(0)x +(f^2(0))/(2!)x^2 +(f^3(0))/(3!)x^3 +(f^4(0))/(4!)x^4 +...
To list the f^n(x) , we may apply derivative formula for trigonometric functions: 
d/(dx) sin(x) = cos(x) and d/(dx)cos(x) = -sin(x).
f(x)=cos(x)
f'(x)=d/(dx)cos(x) = -sin(x)
f^2(x)=d/(dx) -sin(x) = -cos(x)
f^3(x)=d/(dx) -cos(x)= - (-sin(x))= sin(x)
f^4(x)=d/(dx)d/(dx) sin(x) = cos(x)
Plug-in  x=0 , we get:
f(0)=cos(0) =1
f'(0) = -sin(0)=0
f^2(0) = -cos(0)=-1
f^3(0)=sin(0)=0
f^4(0)= cos(0) =1
Note: cos(0)= 1 and sin(0)=0 .
Plug-in the f^n(0) values on the formula for Maclaurin series, we get:
cos(x) =sum_(n=0)^oo (f^n(0))/(n!)x^n
              =1 +0*x+(-1)/(2!)x^2+(0)/(3!)x^3+(1)/(4!)x^4+...
               =1 +0-1/2x^2+0/6x^3 +1/24x^4+...
              =1 +0-1/2x^2+0 +1/24x^4+...
               =1 -1/2x^2 +1/24x^4+...
                = sum_(n=0)^oo ((-1)^n x^(2n))/((2n)!)
To determine the interval of convergence, we apply Ratio test.
In ratio test, we determine a limit as lim_(n-gtoo)| a_(n+1)/a_n| =L where a_n!=0 for all ngt=N .
The series sum a_n is a convergent series when L lt1 .
From the Maclaurin series of cos(x) as sum_(n=0)^oo ((-1)^n x^(2n))/((2n)!) , we have:
a_n= ((-1)^n x^(2n))/((2n)!) then 1/a_n=((2n)!) /((-1)^n x^(2n))
Then, a_(n+1) =(-1)^(n+1) x^(2(n+1))/((2(n+1))!)
                      =(-1)^(n+1) x^(2n+2)/((2n+2)!)
                      =(-1)^n*(-1)^1 (x^(2n)*x^2)/((2n+2)(2n+1)(2n)!)
                      = ((-1)^n*(-1)x^(2n)*x^2)/((2n+2)(2n+1)(2n)!)
We set up the limit lim_(n-gtoo)| a_(n+1)/a_n| as:
lim_(n-gtoo) |a_(n+1)/a_n| =lim_(n-gtoo) |a_(n+1) * 1/a_n |
=lim_(n-gtoo) |((-1)^n*(-1)^1* x^(2n)*x^2)/((2n+2)(2n+1)(2n)!)*((2n)!) /((-1)^n x^(2n))|
Cancel out common factors: (-1)^n, (2n)!, and x^(2n) , the limit becomes;
lim_(n-gtoo) |(-x^2)/((2n+2)(2n+1))|
Evaluate the limit.
lim_(n-gtoo) |- x^2/((2n+2)(2n+1))|=|-x^2/2| lim_(n-gtoo) 1/((2n+2)(2n+1))
                                           =|-x^2/2|*1/ oo
                                           =|-x^2/2|*0
                                            =0
The L=0 satisfy the Llt1 for every x .
Therefore, Maclaurin series of cos(x) as sum_(n=0)^oo (-1)^n x^(2n)/((2n)!) converges for all x.
Interval of convergence: -ooltxltoo .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...