Thursday, February 2, 2017

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 45

Suppose that the signum function, denoted by sgn is defined by:

$
\text{sgn }x =
\left\{
\begin{array}{c}
-1 & \text{if} & x < 0\\
0 & \text{if} & x = 0\\
1 & \text{if} & x > 0
\end{array}
\right.
$


(a) Sketch the graph of the function sgn $x$
(b) Determine each of the following limits and explain if the limit does not exist


$
\begin{equation}
\begin{aligned}
(i) & \lim\limits_{x \to 0^+} \text{ sgn }x
& (ii) & \lim\limits_{x \to 0^-} \text{ sgn }x\\
(iii) & \lim\limits_{x \to 0} \text{ sgn }x
& (iv) & \lim\limits_{x \to 0} |\text{ sgn } x|
\end{aligned}
\end{equation}
$



a.)



b.)

$(i)$ Referring to the graph given, the $\lim\limits_{x \to 0^+} \text{sgn} x = 1$
$(ii)$ Referring to the graph given, the $\lim\limits_{x \to 0^-} \text{sgn} x = -1$
$(iii)$ Referring to the graph given, the $\lim\limits_{x \to 0} \text{sgn} x$, does not exist because the left and right hand limits are different.
$(iv)$ Referring to the graph given, the $\lim\limits_{x \to 0} |\text{sgn} x | = 1$ for all values of $x$ except 0. Therefore, the limit is 1.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...