Saturday, February 11, 2017

Single Variable Calculus, Chapter 7, 7.6, Section 7.6, Problem 36

Find the derivative of $f(x) = \arcsin(e^x)$.

Determine the domains of the function and its derivative.

$
\begin{equation}
\begin{aligned}
f'(x) &= \frac{1}{\sqrt{1 - (e^x)^2}} - \frac{d}{dx} (e^x)\\
\\
f'(x) &= \frac{e^x}{\sqrt{1-e^{2x}}}
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
\text{Since the domain of the inverse sine function is } [-1,1]\text{ , the domain of } f \text{ is } - \leq e^x \leq 1 &= \ln (-1) \leq x \ln e \leq \ln 1\\
\\
&= \infty \leq x \leq 0\\
\\
&= (\infty, 0, ]
\end{aligned}
\end{equation}
$


The whole domain of $f'(x)$ is...

$
\begin{equation}
\begin{aligned}
&= 1 - e^{2x} > 0\\
\\
&= 1 > e^{2x}\\
\\
&= \ln (1) > (\ln e) (2x)\\
\\
&= 0 > x
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...