Thursday, February 16, 2017

Calculus and Its Applications, Chapter 1, Review Exercises, Section Review Exercises, Problem 48

Differentiate. For $\displaystyle y = \frac{3}{42}x^7 - 10x^3 + 13x^2 28x - 2$. Find $y''$


$
\begin{equation}
\begin{aligned}
y' &= \frac{3}{42} \cdot \frac{d}{dx} (x^7) - 10 \cdot \frac{d}{dx} (x^3) + 13 \cdot \frac{d}{dx} (x^2) + 28 \cdot \frac{d}{dx} (x) - \frac{d}{dx} (2)\\
\\
y' &= \frac{3}{42} \cdot 7x^{7 - 1} - 10 \cdot 3x^{3 - 1} + 13 \cdot 2x^{2 - 1} + 28(1) - 0 \\
\\
y' &= \frac{1}{2} x^6 - 30x^2 + 26x + 28
\end{aligned}
\end{equation}
$


Then,

$
\begin{equation}
\begin{aligned}
y'' &= \frac{1}{2} \cdot \frac{d}{dx} (x^6) - 30 \cdot \frac{d}{dx} (x^2) + 26 \cdot \frac{d}{dx} (x) + \frac{d}{dx} (28)\\
\\
y'' &= \frac{1}{2} \cdot 6x^{6 - 1} - 30 \cdot 2 x^{2 - 1} + 26(1) + 0\\
\\
y'' &= 3x^5 - 60x + 26
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...