Monday, February 20, 2017

College Algebra, Chapter 9, 9.5, Section 9.5, Problem 12

Prove that the formula 112+123+134+...+1n(n+1)=n(n+1) is true for all natural numbers n.

By using mathematical induction,

Let P(n) denote the statement 112+123+134+...+1n(n+1)=n(n+1).

Then, we need to show that P(1) is true. So,


112=1(1+1)12=12


Thus, we prove the first principle of the mathematical induction. More over, assuming that P(k) is true, then

112+123+134+...+1k(k+1)=k(k+1)

Now, by showing P(k+1), we have


112+123+134+...+1k(k+1)+1(k+1)[(k+1)+1]=k+1[(k+1)+1]112+123+134+...+1k(k+1)+1(k+1)(k+2)=k+1k+2


We start with the left side and use the induction hypothesis to obtain the right side of the equation:


=[112+123+134+...+1k(k+1)]+[1(k+1)(k+2)]Group the first k terms=kk+1+1(k+1)(k+2)Induction hypothesis=k(k+2)+1(k+1)(k+2)Get the LCD=k2+2k+1(k+1)(k+2)Expand the numerator=(k+1)2(k+1)(k+2)Factor=k+1k+2Simplify


Therefore, P(k+1) follows from P(k), and this completes the induction step.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...