Sunday, February 19, 2017

Beginning Algebra With Applications, Chapter 6, Review Exercises, Section Review Exercises, Problem 18

Solve by substitution: $
\begin{equation}
\begin{aligned}

9x+12y =& -1 \\
x-4y =& -1

\end{aligned}
\end{equation}
$


$
\begin{equation}
\begin{aligned}

9x+12y =& -1
&& \text{Solve equation 2 for } x
\\
\\
x =& 4y - 1
&&
\\
\\
9x + 12y =& -1
&& \text{Substitute $4y - 1$ for $x$ in equation 1}
\\
\\
9(4y-1) + 12y =& -1
&& \text{Solve for } y
\\
\\
36y-9 + 12y =& -1
&&
\\
\\
48y =& 8
&&
\\
\\
y =& \frac{8}{48}
&&
\\
\\
y =& \frac{1}{6}
&&

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

x =& 4 \left( \frac{1}{6} \right) -1
\qquad \text{Substitute the value of $y$ in equation 2}
\\
\\
x =& \frac{2}{3}-1
\\
\\
x =& \frac{-1}{3}

\end{aligned}
\end{equation}
$


The solution is $\displaystyle \left( \frac{-1}{3}, \frac{1}{6} \right)$.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...