Friday, February 10, 2017

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 10

Differentiate $\displaystyle \frac{1 + \sin x}{x + \cos x}$


$
\begin{equation}
\begin{aligned}

y' =& \frac{\displaystyle (x + \cos x) \frac{d}{dx} (1 + \sin x) - \left[ (1 + \sin x) \frac{d}{dx} (x + \cos x) \right] }{(x + \cos x)^2}
&& \text{Using Quotient Rule}
\\
\\
y' =& \frac{(x + \cos x)(0 + \cos x) - [(1 + \sin x) (1 - \sin x)]}{(x + \cos x)^2}
&& \text{Simplify the equation}
\\
\\
y' =& \frac{x \cos x + \cos^2 x - (1 - \sin^2 x)}{(x + \cos x)^2}
&& \text{}
\\
\\
y' =& \frac{x \cos x + \cos^2 x - 1 + \sin^2 x}{(x + \cos x)^2}
&& \text{Use the Trigonometric Identities to simplify the equation}
\\
\\
y' =& \frac{x \cos x -1 + 1}{(x + \cos x)^2}
&& \text{Combine like terms}
\\
\\
y' =& \frac{x \cos x}{(x + \cos x)^2}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...