Thursday, February 2, 2017

College Algebra, Chapter 1, 1.1, Section 1.1, Problem 88

Solve the equation $\displaystyle a-2 [ b - 3 (c -x)] = 6$ for $x$

$
\begin{equation}
\begin{aligned}
a - 2 [ b - 3 (c - x) ] &= 6 && \text{Apply Distributive Property}\\
\\
a - 2 ( b- 3c - 3x ) &= 6 && \text{Apply Distributive Property}\\
\\
a - 2b + 6c + 6x &= 6 && \text{Add both sides by } (-a + 2b - 6c)\\
\\
a - 2b + 6c + 6x - a + 2b - 6c &= 6 - a + 2b - 6c && \text{Simplify}\\
\\
6x &= 6 - a + 2b-6c && \text{Divide both sides by 6}\\
\\
\frac{\cancel{6}x}{\cancel{6}} &= \frac{6-a+2b-6c}{6} && \text{Simplify}\\
\\
x &= \frac{6-a+2b-6c}{6}\\
\\
& \text{or}\\
\\
x &= 1 - \frac{a}{6} + \frac{b}{3} - c
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...