Wednesday, August 12, 2015

Beginning Algebra With Applications, Chapter 2, Review Exercises, Section Review Exercises, Problem 22

Simplify $-2[x - 2(x-y)] + 5y$

$
\begin{equation}
\begin{aligned}
&=-2[x - 2(x) - (-2)(y)] + 5y && \text{Use the Distributive Property}\\
\\
&= -2[x -2x + 2y] + 5y && \text{Evaluate}\\
\\
&= -2[-x + 2y] + 5y && \text{Evaluate}\\
\\
&= -2[-x + 2y] + 5y && \text{Combine like terms}\\
\\
&= (-2)(-x) + (-2)(2y) + 5y && \text{Again by using the Distributive Property}\\
\\
&= ((-2) \cdot (-1))x - (2 \cdot 2)y + 5y && \text{Use the Associative Property of Multiplication to group factors}\\
\\
&= 2x -4y + 4y && \text{Evaluate}\\
\\
&= 2x + y && \text{Combine like terms}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...