Sunday, August 23, 2015

sum_(n=1)^oo (1/n-1/n^2)^n Use the Root Test to determine the convergence or divergence of the series.

To apply Root test on a series sum a_n , we determine the limit as:
lim_(n-gtoo) root(n)(|a_n|)= L
or                         
lim_(n-gtoo) |a_n|^(1/n)= L
Then, we follow the conditions:
a) Llt1 then the series is absolutely convergent.
b) Lgt1 then the series is divergent.
c) L=1 or does not exist  then the test is inconclusive. The series may be divergent, conditionally convergent, or absolutely convergent.
In order to apply Root Test in determining the convergence or divergence of the series sum_(n=1)^oo (1/n -1/n^2)^n , we let: a_n =(1/n -1/n^2)^n.
We set-up the limit as: 
lim_(n-gtoo) |(1/n -1/n^2)^n|^(1/n) =lim_(n-gtoo) ((1/n -1/n^2)^n)^(1/n)
Apply the Law of Exponents:(x^n)^m= x^(n*m) .
lim_(n-gtoo) ((1/n -1/n^2)^n)^(1/n) =lim_(n-gtoo) (1/n -1/n^2)^(n*1/n)
                                    =lim_(n-gtoo) (1/n -1/n^2)^(n/n)
                                     =lim_(n-gtoo) (1/n -1/n^2)^1
                                     =lim_(n-gtoo) (1/n -1/n^2)
Evaluate the limit by applying the limit property: lim_(x-gta)[(f(x))-(g(x))] =lim_(x-gta) f(x) -lim_(x-gta) g(x) .
lim_(n-gtoo) (1/n -1/n^2)=lim_(n-gtoo) 1/n -lim_(n-gtoo) 1/n^2
                            = 1/oo - 1/oo^2
                            = 1/oo - 1/oo
                            = 0 -0
                            = 0
The limit value L=0 satisfies the condition: L lt1 since 0lt1 .
Conclusion: The series sum_(n=1)^oo (1/n -1/n^2)^n is absolutely convergent.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...