Sunday, August 30, 2015

Single Variable Calculus, Chapter 6, 6.5, Section 6.5, Problem 14

Determine the numbers $b$ such that the average value of $f(x) = 2 + 6x - 3x^2$ on the interval $[0, b]$ is eqaul to 3.


$
\begin{equation}
\begin{aligned}

& f_{ave} = \frac{1}{b - a} \int^b_a f(x) dx
\\
\\
& 3 = \frac{1}{b - 0} \int^b_0 (2 + 6x - 3x^2) dx
\\
\\
& 3b = \left[ 2x + \frac{6x^2}{2} - \frac{3x^3}{3} \right]^b_0
\\
\\
& 3b = \left] 2(b) + \frac{6 (b)^2}{2} - \frac{3 (b)^3}{3} \right] - \left[ 2(0) + \frac{6(0)^2}{2} - \frac{3(0)^2}{3} \right]
\\
\\
& 3b = 2b + 3b^2 - b^3
\\
\\
& b^3 - 3b^2 + b = 0
\\
\\
& \text{We have,}
\\
\\
& b = 0 \text{ and } b^2 - 3b + 1 = 0
\\
\\
& \text{By applying Quadratic Formula}
\\
\\
& b = 2.6180 \text{ and } b = 0.3820

\end{aligned}
\end{equation}
$


Therefore, the values of $b$ are..

$b = 0, b = 2.6180$ and $b = 0.3820$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...