Monday, August 31, 2015

Single Variable Calculus, Chapter 4, 4.8, Section 4.8, Problem 16

Use Newton's Method to approximate the positive root of $2 \cos x = x^4$ correct to six decimal places.

Rewrite the equation in Standard Form

$2 \cos x - x^4 = 0$

Therefore, let $f(x) = 2 \cos x - x^4$. Then,


$
\begin{equation}
\begin{aligned}

f'(x) =& 2 \frac{d}{dx} (\cos x) - \frac{d}{dx} (x^4)
\\
\\
f'(x) =& 2 (- \sin x) - 4x^3
\\
\\
f'(x) =& -2 \sin x - 4x^3

\end{aligned}
\end{equation}
$


Using Approximation Formula


$
\begin{equation}
\begin{aligned}

x_{n + 1} =& x_n - \frac{f(x_n)}{f'(x_n)}
\\
\\
x_{n + 1} =& x_n - \frac{2 \cos x_n - x_n^4}{-2 \sin x_n 4x^3_n}
\\
\\
x_{n + 1} =& x_n + \frac{2 \cos x_n - x^4_n}{2 \sin x_n + 4x^3_n}


\end{aligned}
\end{equation}
$









To find the initial approximation $x_1$, we graph $y = 2 \cos x$ and $y = x^4$.

Based from the graph, it appears that they intersect at a point in $x$-coordinate where they are very close to -1 and 1. We have $x_1 = 1$ and $x_1 = -1$ as the initial approximation.

So we get


$
\begin{equation}
\begin{aligned}

x_2 =& x_1 + \frac{2 \cos x_1 - x_1^4}{2 \sin x_1 + 4x_1^3}
&&
\\
\\
x_2 =& 1 + \frac{2 \cos(1) - (1)^4}{2 \sin(1) + 4(1)^3}
&& x_2 = -1 + \frac{2 \cos (-1) - (-1)^4}{2 \sin (-1) + 4(-1)}
\\
\\
x_2 \approx & 1.014184
&& x_2 \approx - 1.014184
\\
\\
x_3 =& 1.014184 + \frac{f(1.014184)}{f'(1.014184)}
&& x_3 = - 1.014184 + \frac{f(-1.014184)}{f'(-1.014184)}
\\
\\
x_3 \approx & 1.013958
&& x_3 \approx - 1.013958
\\
\\
x_4 =& 1.013958 + \frac{f(1.013958)}{f'(1.013958)}
&& x_4 = - 1.013958 + \frac{f(-1.013958)}{f'(-1.013958)}
\\
\\
x_4 \approx & 1.013958
&& x_4 \approx -1.013958

\end{aligned}
\end{equation}
$


Since $x_3$ and $x_4$ agree to six decimal places, therefore $x \approx 1.013958$ and $x \approx -1.013958$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...