Friday, August 14, 2015

College Algebra, Chapter 2, 2.3, Section 2.3, Problem 4

Below are the graphs of $y = 5x - x^2$ and $y =4$.




a.) Find the solutions of the equation $5x - x^2 = 4$
b.) Find the solutions of the inequality $5x - x^2 > 4$

a.)

$
\begin{equation}
\begin{aligned}
5x - x^2 &=4 && \text{Model}\\
\\
-5x + x^2 &= -4 && \text{Divide both sides by } -1 \\
\\
x^2 - 5x + \frac{25}{4} &= -4 + \frac{25}{4} && \text{Complete the square: Add } \left( \frac{-5}{2} \right)^2 = \frac{25}{4}\\
\\
\left( x - \frac{5}{2} \right)^2 &= \frac{9}{4} && \text{Perfect square}\\
\\
x &= \pm \sqrt{\frac{9}{4}} && \text{Take the square root}\\
\\
x &= \frac{5}{2} \pm \frac{3}{2} && \text{Add } \frac{5}{2}
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
x &= \frac{5}{2} + \frac{3}{2} &&\text{and}& x &= \frac{5}{2} - \frac{3}{2} && \text{Solve for } x\\
\\
x &=4 &&\text{and}& x &=1 && \text{Simplify}
\end{aligned}
\end{equation}
$


b.)

$
\begin{equation}
\begin{aligned}
5x - x^2 &> 4 && \text{Model}\\
\\
-5x + x^2 &< -4 && \text{Divide both sides by } -1 \\
\\
x^2 - 5x + \frac{25}{4} &< -4 + \frac{25}{4} && \text{Complete the square: Add } \left( \frac{-5}{2} \right)^2 = \frac{25}{4}\\
\\
\left( x - \frac{5}{2} \right)^2 &< \frac{9}{4} && \text{Perfect square}

\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
x - \frac{5}{2} &< \sqrt{\frac{9}{4}} &&\text{and}& x - \frac{5}{2} &> - \sqrt{\frac{9}{4}} && \text{Take the square root}\\
\\
x &< \frac{5}{2} + \sqrt{\frac{9}{4}} &&\text{and}& x &> \frac{5}{2} - \sqrt{\frac{9}{4}} && \text{Add } \frac{5}{2}\\
\\
x &< \frac{5}{2} + \frac{3}{2} &&\text{and}& x &> \frac{5}{2} + \frac{3}{2} && \text{Solve for } x\\
\\
x &< 4 &&\text{and}& x &> 1 && \text{Simplify}
\end{aligned}
\end{equation}
$


The solution is $1 < x < 4$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...