Friday, August 21, 2015

Calculus: Early Transcendentals, Chapter 7, 7.4, Section 7.4, Problem 35

int (dx)/(x(x^2+4)^2)
= int 1/(x(x^2+4)^2)dx
To solve, apply partial fraction decomposition. So to express the integrand as sum of proper rational expressions, set-up the equation as follows:
1/(x(x^2+4)^2) = A/x + (Bx+C)/(x^2+4) + (Dx+E)/(x^2+4)^2
Multiply both sides by the LCD.
1=A(x^2+4)^2 + (Bx+C)(x)(x^2+4) + (Dx+E)(x)
1=Ax^4+8Ax^2+16A + Bx^4+Cx^3+4Bx^2+4Cx+Dx^2+Ex
1=(A+B)x^4 + Cx^3 + (8A+4B)x^2+(4C+E)x +16A
Express the left side as polynomial with degree 4.
0x^4 + 0x^3+0x^2+0x+1 =(A+B)x^4 + Cx^3 + (8A+4B+D)x^2+(4C+E)x +16A
For the two sides to be equal, the coefficients of the polynomial should be the same. So set the coefficients of the two polynomials equal to each other.
x^4:
0 = A + B (Let this be EQ1.)
x^3:
0=C (Let this be EQ2.)
x^2:
0=8A+4B+D (Let this be EQ3.)
x:
0=4C+E (Let this be EQ4.)
Constant:
1 = 16A (Let this be EQ5.)
Notice that the value of C is already known. So let's solve for the values of A, B, D and E.
Plug-in the value of C to EQ4.
0=4(0) + E
0=E
Isolate the A in EQ5.
1=16A
1/16=A
Then, plug-in the value of A to EQ1.
0=1/16+B
-1/16=B
And, plug-in the value of A and B to EQ3.
0=8(1/16)+4(-1/16)+D
0=8/16-4/16+D
0=4/16+D
0=1/4+D
-1/4=D
So the partial fraction decomposition of the integrand is:
1/(x(x^2+4)^2) = (1/16)/x + (-1/16x+0)/(x^2+4) + (-1/4x+0)/(x^2+4)^2 = 1/(16x) -x/(16(x^2+4))-x/(4(x^2+4)^2)
Then, proceed to take the integral of it.
int1/(x(x^2+4)^2) dx
= int (1/(16x)-x/(16(x^2+4))-x/(4(x^2+4)^2))dx
= int 1/(16x)dx - int x/(16(x^2+4)) dx - int x/(4(x^2+4)^2)dx
For the second and third integral, apply u-substitution method.
u=x^2+4
du=2x dx
(du)/2=xdx
= int 1/(16x)dx - int 1/(16u)*(du)/2 int (1/(4u^2) *(du)/2
= 1/16int 1/xdx - 1/32int 1/u*du -1/8int 1/u^2du
=1/16int 1/xdx - 1/32int 1/u*du -1/8int u^(-2)du
=1/6ln|x| -1/32 ln|u| +1/(8u)+C
And, substitute back u=x^2+4 .
=1/16ln|x|-1/32ln|x^2+4| +1/(8(x^2+4))+C

Therefore, int (dx)/(x(x^2+4)^2)=1/16ln|x|-1/32ln|x^2+4| +1/(8(x^2+4))+C .

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...