Saturday, August 15, 2015

Calculus: Early Transcendentals, Chapter 7, 7.2, Section 7.2, Problem 49

intxtan^2(x)dx
Let's evaluate the above integral by using the method of integration by parts,
If f(x) and g(x) are differentiable functions , then
intf(x)g'(x)=f(x)g(x)-intf'(x)g(x)dx
If we write f(x)=u and g'(x)=v, then
intuvdx=uintvdx-int(u'intvdx)dx
Let's denote u=x and v=tan^2(x)
intxtan^2(x)dx=x*inttan^2(x)dx-int(1inttan^2(x)dx)dx
Now let's use the identity:tan^2(x)=sec^2(x)-1
=x*int(sec^2(x)-1)dx-int(int(sec^2(x)-1)dx)dx
=x*(intsec^2(x)dx-int1dx)-int(int(sec^2(x)-1)dx)dx
=x*(tan(x)-x)-int(tan(x)-x)dx
=xtan(x)-x^2-inttan(x)+intxdx
=xtan(x)-x^2-(-ln|cos(x)|)+x^2/2
=xtan(x)-x^2+x^2/2+ln|cos(x)|
=xtan(x)+ln|cos(x)|-x^2/2
Add a constant C to the solution,
=xtan(x)+ln|cos(x)|-x^2/2+C

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...