Monday, June 3, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 58

Given the function $f(x) = \sin (x + \sin 2 x); 0 \leq x \leq \pi$ arises in applications to Frequently Modulation (FM) synthesis.

Sketch the graph of $f'$ using a graph of $f$.








b.) Find and graph $f'$.


$
\begin{equation}
\begin{aligned}

f'(x) =& \frac{d}{dx} [\sin (x + \sin 2x)]
\\
\\
f'(x) =& \cos (x + \sin 2x) \cdot \frac{d}{dx} (x + \sin 2x)
\\
\\
f'(x) =& \cos (x + \sin 2x) \cdot \left[ \frac{d}{dx} (x) + \frac{d}{dx} (\sin 2x) \right]
\\
\\
f'(x) =& \cos (x + \sin 2x) [1 + (\cos 2x) (2)]
\\
\\
f'(x) =& \cos (x + \sin 2x) (1 + 2 \cos 2 x)


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...