Friday, June 28, 2019

Single Variable Calculus, Chapter 4, 4.7, Section 4.7, Problem 6

First the dimension of a rectangle with area $1000 m^2$ whose perimeter is as small as possible.
Let $A$ and $P$ be the area and the perimeter of the rectangle respectively.
So, $A = xY$; $xy = 1000$
We have, $\displaystyle x = \frac{1000}{y} \quad \Longleftarrow \text{(Equation 1)}$

Also, $P = 2x + 2y$
Substitute Equation 1

$
\begin{equation}
\begin{aligned}
P &= 2 \left( \frac{1000}{y} \right) +2y\\
\\
P &= \frac{2000}{y} + 2y
\end{aligned}
\end{equation}
$

when $P' = 0$,

$
\begin{equation}
\begin{aligned}
P' &= \frac{-2000}{y^2} +2\\
\\
0 &= \frac{-2000}{y^2} +2\\
\\
y^2 &= \frac{2000}{2}\\
\\
y &= \sqrt{1000}\\
\\
y &= 10\sqrt{10}m
\end{aligned}
\end{equation}
$

So,

$
\begin{equation}
\begin{aligned}
x &= \frac{1000}{y} = \frac{1000}{10\sqrt{10}}\\
\\
x &= 10 \sqrt{10}m
\end{aligned}
\end{equation}
$

Therefore, the rectangle has length $x = 10 \sqrt{10}m$ and width $y = 10 \sqrt{10}m$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...