Thursday, June 27, 2019

College Algebra, Chapter 9, 9.6, Section 9.6, Problem 22

Evaluate the expression
$
\left(
\begin{array}{c}
5\\
2
\end{array}
\right)
\left(
\begin{array}{c}
5\\
3
\end{array}
\right)
$

Recall that the binomial coefficient is denoted by $\displaystyle \left( \frac{n}{r} \right)$ and is defined by
Substituting $n = 5$ and $r = 2$ gives

$
\begin{equation}
\begin{aligned}
\begin{array}{c}
5\\
2
\end{array}
=
\frac{5!}{2!(5-2)!}
=
\frac{5!}{2!3!}
&=
\frac{5\cdot 4 \cdot \cancel{3 \cdot 2 \cdot 1}}{(2\cdot1)(\cancel{3 \cdot 2 \cdot 1})}\\
\\
&= \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2}\\
\\
&= 10
\end{aligned}
\end{equation}
$


Substituting $n = 5$ and $r = 3$ gives

$
\begin{equation}
\begin{aligned}
\left(
\begin{array}{c}
5\\
3
\end{array}
\right)
=
\frac{5!}{3!(5-3)!}
=
\frac{5!}{3!2!}
&=
\frac{5\cdot 4 \cdot \cancel{3 \cdot 2 \cdot 1}}{\cancel{3 \cdot 2 \cdot 1}(2\cdot 1)}\\
\\
&= \frac{5 \cdot 4}{2 \cdot 1} = \frac{20}{2}\\
\\
&= 10
\end{aligned}
\end{equation}
$

Thus,

$
\left(
\begin{array}{c}
5\\
2
\end{array}
\right)
\left(
\begin{array}{c}
5\\
3
\end{array}
\right)
= (10)(10)
= 100
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...