Wednesday, June 26, 2019

Single Variable Calculus, Chapter 3, 3.6, Section 3.6, Problem 41

Determine the equation of the tangent line to the hyperbola $\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $(x_0, y_0)$

Taking the derivative of the curve implicitly we have...


$
\begin{equation}
\begin{aligned}

\frac{1}{a^2} (2x) - \frac{1}{b^2} \left( 2y \frac{dy}{dx} \right) =& 0
\\
\\
\frac{dy}{dx} =& \frac{xb^2}{ya^2}

\end{aligned}
\end{equation}
$


Using Point Slope Form


$
\begin{equation}
\begin{aligned}

y - y_0 =& m(x - x_0)
\\
\\
y - y_0 =& \frac{xb^2}{ya^2} (x - x_0)

\end{aligned}
\end{equation}
$


Multiplying $\displaystyle \frac{y}{b^2}$ or both sides of the equation we have


$
\begin{equation}
\begin{aligned}

\frac{y}{b^2} (y - y_0) =& \frac{x}{a^2} (x - x_0)
\\
\\
\frac{y^2}{b^2} - \frac{y y_0}{b^2} =& \frac{x^2}{a^2} - \frac{xx_0}{a^2}
\\
\\
\frac{xx_0}{a^2} - \frac{yy_0}{b^2} =& \frac{x^2}{a^2} - \frac{y^2}{b^2}


\end{aligned}
\end{equation}
$


From the given equation, we know that $\displaystyle \left( \frac{x^2}{a^2} - \frac{y^2}{b^2} \right) = 1$ so

$\displaystyle \frac{xx_0}{a^2} - \frac{yy_ 0}{b^2} = 1$

Hence, the equation of the tangent line at point $(x_0, y_0)$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...