Friday, June 28, 2019

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 32

Determine the integral tan6(ay)dy

Let u=ay, then du=ady, so dy=dua. Thus,


tan6(ay)dy=tan6uduatan6(ay)dy=1atan6udutan6(ay)dy=1atan4utan2uduApply Trigonometric Identity sec2u=tan2u+1tan6(ay)dy=1atan4u(sec2u1)dutan6(ay)dy=1a(tan4usec2utan4u)dutan6(ay)dy=1atan4usec2udu1atan4udu


We integrate the equation term by term

@ 1st term

1atan4usec2udu

Let v=tanu, then dv=sec2udu. Thus


1atan4usec2udu=1av4dv1atan4usec2udu=1a(v4+14+1)+c1atan4usec2udu=v55a+c1atan4usec2udu=(tanu)55a+c1atan4usec2udu=tan5u5a+c


@ 2nd term



1atan4udu=1atan2utan2uduApply Trigonometric Identity sec2u=tan2u+11atan4udu=1atan2u(sec2u1)du1atan4udu=1a(tan2usec2utan2u)du1atan4udu=1atan2usec2udu1atan2uduApply Trigonometric Identity sec2u=tan2u+1 for the 2nd term1atan4udu=1atan2usec2udu1a(sec2u1)du


For the 1st term, let v=tanu, then dv=sec2udu. Thus,


1atan4udu=1av2dv1a(tanuu)+c1atan4udu=1a(v2+12+1)1a(tanuu)+c1atan4udu=v33atanua+ua+cSubstitute value of v1atan4udu=(tanu)33atanua+ua+c1atan4udu=tan3u3atanua+ua+c


Combine the results of the integration term by term


tan6(ay)dy=tan5u5a(tan3u3atanuatanua+ua)+ctan6(ay)dy=tan5u5atan3u3a+tanuaua+cSubstitute value of utan6(ay)dy=tan5(ay)5atan3(ay)3a+tan(ay)a\cancelay\cancela+ctan6(ay)dy=tan5(ay)5atan3(ay)3a+tan(ay)ay+c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...