Friday, June 28, 2019

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 32

Determine the integral $\displaystyle \int \tan^6 (ay) dy$

Let $u = ay$, then $du = ady$, so $\displaystyle dy = \frac{du}{a}$. Thus,


$
\begin{equation}
\begin{aligned}

\int \tan^6 (ay) dy =& \int \tan^6 u \cdot \frac{du}{a}
\\
\\
\int \tan^6 (ay) dy =& \frac{1}{a} \int \tan^6 u du
\\
\\
\int \tan^6 (ay) dy =& \frac{1}{a} \int \tan^4 u \tan^2 u du
\qquad \text{Apply Trigonometric Identity } \sec^2 u = \tan^2 u + 1
\\
\\
\int \tan^6 (ay) dy =& \frac{1}{a} \int \tan^4 u (\sec^2 u - 1) du
\\
\\
\int \tan^6 (ay) dy =& \frac{1}{a} \int (\tan^4 u \sec^2 u - \tan^4 u) du
\\
\\
\int \tan^6 (ay) dy =& \frac{1}{a} \int \tan^4 u \sec^2 u du - \frac{1}{a} \int \tan^4u du

\end{aligned}
\end{equation}
$


We integrate the equation term by term

@ 1st term

$\frac{1}{a} \int \tan^4 u \sec^2 u du$

Let $v = \tan u$, then $dv = \sec^2 u du$. Thus


$
\begin{equation}
\begin{aligned}

\frac{1}{a} \int \tan^4 u \sec^2 u du =& \frac{1}{a} \int v^4 dv
\\
\\
\frac{1}{a} \int \tan^4 u \sec^2 u du =& \frac{1}{a} \left( \frac{v^{4 + 1}}{4 + 1} \right) + c
\\
\\
\frac{1}{a} \int \tan^4 u \sec^2 u du =& \frac{v^5}{5a} + c
\\
\\
\frac{1}{a} \int \tan^4 u \sec^2 u du =& \frac{(\tan u)^5}{5a} + c
\\
\\
\frac{1}{a} \int \tan^4 u \sec^2 u du =& \frac{\tan^5 u}{5a} + c


\end{aligned}
\end{equation}
$


@ 2nd term



$
\begin{equation}
\begin{aligned}

\frac{1}{a} \int \tan^4 u du =& \frac{1}{a} \int \tan^2 u \tan^2 u du
\qquad \text{Apply Trigonometric Identity } \sec^2 u = \tan^2 u + 1
\\
\\
\frac{1}{a} \int \tan^4 u du =& \frac{1}{a} \int \tan^2 u (\sec^2 u - 1) du
\\
\\
\frac{1}{a} \int \tan^4 u du =& \frac{1}{a} \int (\tan^2 u \sec^2 u - \tan^2 u) du
\\
\\
\frac{1}{a} \int \tan^4 u du =& \frac{1}{a} \int \tan^2 u \sec^2 u du - \frac{1}{a} \int \tan^2 u du
\qquad \text{Apply Trigonometric Identity } \sec^2 u = \tan^2 u + 1 \text{ for the 2nd term}
\\
\\
\frac{1}{a} \int \tan^4 u du =& \frac{1}{a} \int \tan^2 u \sec^2 u du - \frac{1}{a} \int (\sec^2 u - 1) du

\end{aligned}
\end{equation}
$


For the 1st term, let $v = \tan u$, then $dv = \sec^2 u du$. Thus,


$
\begin{equation}
\begin{aligned}

\frac{1}{a} \int \tan^4 u du =& \frac{1}{a} \int v^2 dv - \frac{1}{a} (\tan u - u) + c
\\
\\
\frac{1}{a} \int \tan^4 u du =& \frac{1}{a} \left( \frac{v^{2 + 1}}{2 + 1}\right) - \frac{1}{a} ( \tan u - u ) + c
\\
\\
\frac{1}{a} \int \tan^4 u du =& \frac{v^3}{3a} - \frac{\tan u}{a} + \frac{u}{a} + c
\qquad \text{Substitute value of } v
\\
\\
\frac{1}{a} \int \tan^4 u du =& \frac{(\tan u)^3}{3a} - \frac{\tan u}{a} + \frac{u}{a} + c
\\
\\
\frac{1}{a} \int \tan^4 u du =& \frac{\tan^3 u}{3a} - \frac{\tan u}{a} + \frac{u}{a} + c

\end{aligned}
\end{equation}
$


Combine the results of the integration term by term


$
\begin{equation}
\begin{aligned}

\int \tan^6 (ay) dy =& \frac{\tan^5 u}{5a} - \left( \frac{\tan^3u}{3a} -\frac{\tan u}{a} - \frac{\tan u}{a} + \frac{u}{a} \right) + c
\\
\\
\int \tan^6 (ay) dy =& \frac{\tan^5 u}{5a} - \frac{\tan^3 u}{3a} + \frac{\tan u}{a} - \frac{u}{a} + c
\qquad \text{Substitute value of } u
\\
\\
\int \tan^6 (ay) dy =& \frac{\tan^5 (ay)}{5a} - \frac{\tan^3 (ay)}{3a} + \frac{\tan (ay)}{a} - \frac{\cancel{a}y}{\cancel{a}} + c
\\
\\
\int \tan^6 (ay) dy =& \frac{\tan^5 (ay)}{5a} - \frac{\tan^3 (ay)}{3a} + \frac{\tan (ay)}{a} - y + c

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...