Saturday, June 22, 2019

Single Variable Calculus, Chapter 3, 3.5, Section 3.5, Problem 46

Determine the derivative of the function $y = \left[ x + ( x + \sin^2x)^3\right]^4$


$
\begin{equation}
\begin{aligned}
y' &= \frac{d}{dx} \left[ x + ( x + \sin^2x)^3\right]^4\\
\\
y' &= 4 \left[ x + ( x + \sin^2x)^3\right]^3 \frac{d}{dx} \left[ x + ( x + \sin^2x)^3\right]\\
\\
y' &= 4 \left[ x + ( x + \sin^2x)^3\right]^3 \left[ \frac{d}{dx} (x) + \frac{d}{dx} ( x + \sin^2 x)^3 \right]\\
\\
y' &= 4 \left[ x + ( x + \sin^2x)^3\right]^3 \left[ 1+3(x+\sin^2x)^2 \frac{d}{dx} (x+\sin^2x)\right]\\
\\
y' &= 4 \left[ x + ( x + \sin^2x)^3\right]^3 \left[ 1+3(x+\sin^2x)^2 \left(\frac{d}{dx} (x) + \frac{d}{dx} (\sin x)^2 \right)\right]\\
\\
y' &= 4 \left[ x + ( x + \sin^2x)^3\right]^3 \left[ 1 +3 ( x+ \sin^2x)^2 \left(1+2(\sin x)\frac{d}{dx}(\sin x)\right)\right]\\
\\
y' &= 4 \left[ x + ( x + \sin^2x)^3\right]^3 \left[ 1+3 (x + \sin^2x)^2(1+2 \sin x \cos x) \right] && \left( \text{Recall the Double Angle Formula } (\sin 2x = 2 \sin x \cos x) \right)\\
\\
y' &= 4 \left[ x + ( x + \sin^2x)^3\right]^3 \left[ 1+3 (x + \sin^2 x)^2 ( 1+ \sin 2x)\right]
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...