Sunday, June 30, 2019

sum_(n=1)^oo 2(-1/2)^n Verify that the infinite series converges

To verify if the given infinite series: sum_(n=1)^oo 2(-1/2)^n converges, recall that infinite series converge to a single finite value S  if the limit of the partial sum S_n as n approaches oo converges to S . We follow it in a formula:
lim_(n-gtoo) S_n=sum_(n=1)^oo a_n = S .
To evaluate the  sum_(n=1)^oo 2(-1/2)^n , we apply the Law of exponent : x^(n+m) = x^n*x^m .
Then, (-1/2)^n =(-1/2)^(n -1+1)
                        =(-1/2)^(n -1)*(-1/2)^1
                        = (-1/2)^(n -1)*(-1/2)
Plug-in (-1/2)^n =(-1/2)^(n -1)*(-1/2) , we get:
sum_(n=1)^oo 2(-1/2)^n =sum_(n=1)^oo 2*(-1/2)^(n -1)*(-1/2)
                          =sum_(n=1)^oo -1*(-1/2)^(n -1)
By comparing given infinite series  sum_(n=1)^oo -1*(-1/2)^(n -1) with the geometric series form sum_(n=1)^oo a*r^(n-1) , we determine the corresponding values as: 
a=-1 and r= -1/2 .
The convergence test for the geometric series follows the conditions:
a) If |r|lt1  or -1 ltrlt 1 then the geometric series converges to sum_(n=0)^oo a*r^n =sum_(n=1)^oo a*r^(n-1)= a/(1-r).
b) If |r|gt=1 then the geometric series diverges.
The r=-1/2 falls within the condition |r|lt1 since |-1/2|lt1 or |-0.5| lt1 .
Therefore, the series converges.
 
By applying the formula: sum_(n=1)^oo a*r^(n-1)= a/(1-r) , we determine that the given geometric series will converge to a value:
 
sum_(n=1)^oo2(-1/2)^n=sum_(n=1)^oo -1*(-1/2)^(n -1)
                            =(-1)/(1-(-1/2))
                             =(-1)/(1+1/2)
                            =(-1)/(2/2+1/2)
                             =(-1)/(3/2)
                             =(-1)*(2/3)
                             = -2/3 or -0.67 (approximated value)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...