Monday, June 10, 2019

Single Variable Calculus, Chapter 2, 2.4, Section 2.4, Problem 15

Show that the statement $\lim\limits_{x \to 1} (2x+3) =5$ is correct using the $\varepsilon$, $\delta$ definition of limit and illustrate its graph.




Based from the defintion,


$
\begin{equation}
\begin{aligned}

\phantom{x} \text{if } & 0 < |x - a| < \delta
\qquad \text{ then } \qquad
|f(x) - L| < \varepsilon\\

\phantom{x} \text{if } & 0 < |x - 1| < \delta
\qquad \text{ then } \qquad
|(2x+3)-5| < \varepsilon\\
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}
& \text{But, } \\
& \phantom{x} & |(2x+3) - 5| = |2x-2| = |2(x-1)| = 2|x-1| \\
& \text{So, we want}\\
& \phantom{x} & \text{ if } 0 < |x-1| < \delta \qquad \text{ then } \qquad 2|x-1| < \varepsilon\\
& \text{That is,} \\
& \phantom{x} & \text{ if } 0 < |x-1| < \delta \qquad \text{ then } \qquad |x-1| < \frac{\varepsilon}{2}\\


\end{aligned}
\end{equation}
$


The statement suggests that we should choose $\displaystyle \delta = \frac{\varepsilon}{2}$.

By proving that the assumed value of $\delta$ will fit the definition...



$
\begin{equation}
\begin{aligned}
\text{if } 0 < |x-1| < \delta \text{ then, }\\
|(2x+3)-5| & = |2x-2| = 2|x-1| < 2 \delta = 2 \left( \frac{\varepsilon}{2} \right) = \varepsilon\\
\end{aligned}
\end{equation}
$



$
\begin{equation}
\begin{aligned}

& \text{Thus, }\\
& \phantom{x} \quad\text{if } 0 < |x-1| < \delta \qquad \text{ then } \qquad |(2x+3)-5| < \varepsilon\\
& \text{Therefore, by the definition of a limit}\\
& \phantom{x} \qquad \lim\limits_{x \to 1} (2x+3) = 5


\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...