Friday, June 7, 2019

Calculus: Early Transcendentals, Chapter 7, 7.4, Section 7.4, Problem 37

You may rebuild the structure you find at denominator, such that:
int (x^2-3x+7)/((x^2-4x+6)^2)dx = int ((x^2-4x+6) + x + 1)/((x^2-4x+6)^2)dx
Separate into two integrals:
int (x^2-4x+6)/((x^2-4x+6)^2)dx + int (x + 1)/((x^2-4x+6)^2)dx
Take the first integral and reduce like terms:
int (x^2-4x+6)/((x^2-4x+6)^2)dx = int 1/((x^2-4x+6))dx
You may write x^2 - 4x + 6 = x^2 - 4x + 4 + 2 = (x- 2)^2 + 2
int 1/((x^2-4x+6))dx= int 1/((x- 2)^2 + 2)dx = sqrt2/2 arctan ((x - 2)/sqrt2) + c
You need to take the integral int (x + 1)/((x^2-4x+6)^2)dx and to separate it into two simpler integrals:
int (x + 1)/((x^2-4x+6)^2)dx = int x/((x^2-4x+6)^2)dx + int 1/((x^2-4x+6)^2)dx
You should notice that if you differentiate x^2-4x+6 yields 2x - 4, hence, you need to multiply and divide by two and then subtract and add 4, such that:
(1/2)int ((2x-4) + 4)/((x^2-4x+6)^2)dx = (1/2)int ((2x-4))//((x^2-4x+6)^2)dx + 2int 1/((x^2-4x+6)^2)dx
Hence, int (x + 1)/((x^2-4x+6)^2)dx = (1/2)int ((2x-4))//((x^2-4x+6)^2)dx + 3int 1/((x^2-4x+6)^2)dx
You need to use substitution to solve (1/2)int ((2x-4))//((x^2-4x+6)^2) dx such that:
x^2-4x+6 = t => (2x-4)dx = dt
(1/2)int ((2x-4))//((x^2-4x+6)^2) dx= (1/2) int (dt)/t^2 = -1/(2t) = -1/(2(x^2-4x+6)) + c
Put (x - 2)/(2sqrt2)=t => (dx)/(2sqrt2) = dt
3int 1/((x^2-4x+6)^2)dx = 3(sqrt2/4)int 1/((t^2+1)^2)
Put t = tan alpha => dt = 1/(cos^2 alpha) d alpha
3(sqrt2/4)int 1/((t^2+1)^2) = 3(sqrt2/4)int cos^2 alpha d alpha
Use the half angle identity:
cos^2 alpha = (1 + cos 2 alpha)/2
3(sqrt2/4)int cos^2 alpha d alpha = 3(sqrt2/4)int(1 + cos 2 alpha)/2 d alpha
3(sqrt2/8)int d alpha + 3(sqrt2/8) int cos 2 alpha d alpha
3(sqrt2/8)int d alpha + 3(sqrt2/16) sin 2 alpha
alpha = arctan((x-2)/(sqrt2))
3(sqrt2/8)arctan((x-2)/(sqrt2)) + 3(sqrt2/16) sin 2 (arctan((x-2)/(sqrt2))) + c
Hence, evaluating the integral yields int (x^2-3x+7)/((x^2-4x+6)^2)dx =sqrt2/2 arctan ((x - 2)/sqrt2) -1/(2(x^2-4x+6)) +3(sqrt2/8)arctan((x-2)/(sqrt2)) + 3(sqrt2/16) sin 2 (arctan((x-2)/(sqrt2))) + c

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...