Friday, October 5, 2018

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 20

Using the definition of derivative, prove that if $f(x) = \cos x$, then $f'(x) = - \sin x$

$f(x + h) = \cos x$

From the formula of addition of two angles of cosine




$
\begin{equation}
\begin{aligned}

\cos (A + B) =& \cos A \cos B - \sin A \sin B
\\
\\
\cos (x + h) =& \cos x \cos h - \sin x \sin h
\\
\\
f'(x) =& \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
&& \text{}
\\
\\
f'(x) =& \lim_{h \to 0} \frac{\cos (x + h) - \cos x}{h}
&& \text{}
\\
\\
f'(x) =& \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}
&& \text{Group the equation}
\\
\\
f'(x) =& \lim_{h \to 0} \cos x \left( \frac{\cos h - 1}{h} \right) - \sin x \left( \frac{\sin h}{h} \right)
&& \text{Apply the Trigonometric Identity}
\\
\\
f'(x) =& \lim_{h \to 0} \cos x (0) - \sin x (1)
&& \text{Simplify the equation}
\\
\\
f'(x) =& - \sin x

\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...