Monday, October 1, 2018

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 7

Determine the $\lim\limits_{x \rightarrow 1} \quad \displaystyle \left(\frac{1+3x}{1+4x^2+3x^4}\right)^3$ and justify each step by indicating the appropriate limit law(s).


$
\begin{equation}
\begin{aligned}
\lim\limits_{x \rightarrow 1} \quad \displaystyle \left(\frac{1+3x}{1+4x^2+3x^4}\right)^3 &= \left(
\lim\limits_{x \rightarrow 1}
\frac{
1+3x
}
{
1+4x^2+3x^4
}
\right)^3
&& \text{(Power Law)}\\
&= \left[
\frac{
\lim\limits_{x \rightarrow 1} (1+3x)
}
{
\lim\limits_{x \rightarrow 1} (1+4x^2+3x^4)
}
\right]^3
&& \text{(Quotient Law)}\\
&= \left(
\frac{
\lim\limits_{x \rightarrow 1} 1 +
\lim\limits_{x \rightarrow 1} 3x
}
{
\lim\limits_{x \rightarrow 1} 1 +
\lim\limits_{x \rightarrow 1} 4x^2 +
\lim\limits_{x \rightarrow 1} 3x^4
}
\right)^3
&& \text{(Sum Law)}\\
&= \left(
\frac{
1 + 3 \lim\limits_{x \rightarrow 1} x
}
{
1 + 4 \lim\limits_{x \rightarrow 1} x^2 +
3 \lim\limits_{x \rightarrow 1} x^4
}
\right)^3
&& \text{(Constant Multiple and Constant Law)}\\

&= \left[
\frac{
1+3(1)
}
{
1+4(1)^2+3(1)^4
}
\right]^3
&& \text{( Special Limit Law)}\\
\\
&= \frac{1}{8}
\end{aligned}
\end{equation}\\

$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...