Monday, October 8, 2018

Calculus: Early Transcendentals, Chapter 7, 7.1, Section 7.1, Problem 24

int_0^1(x^2+1)e^-xdx
Let's first evaluate the indefinite integral,using the method of integration by parts
int(x^2+1)e^-xdx=(x^2+1)inte^-xdx-int(d/dx(x^2+1)inte^-xdx)dx
=(x^2+1)(-e^-x)-int(2x*(-e^-x))dx
=-(x^2+1)e^-x+2intxe^-xdx
applying again integration by parts,
=-(x^2+1)e^-x+2(x*inte^-xdx-int(d/dx(x)inte^-xdx)dx
=-(x^2+1)e^-x+2(x(-e^-x)-int(-e^-x)dx)
=-(x^2+1)e^-x+2(-xe^-x+inte^-xdx)
=-(x^2+1)e^-x+2(-xe^-x+(-e^-x))
=-(x^2+1)e^-x-2xe^-x-2e^-x
=-e^-x(x^2+1+2x+2)
=-e^-x(x^2+2x+3)
adding a constant to the solution,
=-e^-x(x^2+2x+3)+C
Now evaluate the definite integral,
int_0^1(x^2+1)e^-xdx=[-e^-x(x^2+2x+3)]_0^1
=[-e^-1(1^2+2*1+3)]-[-e^0(0^2+2*0+3)]
=[-e^-1(6)]-[-1*3]
=-6/e+3

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...