Sunday, October 7, 2018

Calculus: Early Transcendentals, Chapter 2, Review Exercises, Section Review Exercises, Problem 16

Determine the limit $\displaystyle \lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4}$

By dividing both numerator and denominator by $x^4$ and by using the property of limits, we have

$
\begin{equation}
\begin{aligned}
\lim_{x \to -\infty} \frac{1 - 2x^2 - x^4}{5 + x - 3x^4} &= \lim_{x \to -\infty} \left( \frac{\frac{1}{x^4} - \frac{2}{x^2} -1}{\frac{5}{x^4} + \frac{1}{x^3} - 3} \right)\\
\\
&= \frac{\displaystyle \lim_{x \to -\infty}\frac{1}{x^4} - 2 \cdot \lim_{x \to -\infty} \frac{1}{x^2} - \lim_{x \to -\infty} 1
}{\displaystyle 5 \cdot \lim_{x \to -\infty} \frac{1}{x^4} + \lim_{x \to -\infty} \frac{1}{x^3} - \lim_{x \to -\infty} 3}\\
\\
&= \frac{0 - 2 \cdot 0 - 1}{5 \cdot 0 + 0 - 3}\\
\\
&= \frac{-1}{-3} = \frac{1}{3}
\end{aligned}
\end{equation}
$


Therefore,
$\displaystyle \lim_{x \to -\infty} \left( \frac{1 - 2x^2 - x^4}{5 + x - 3x^4} \right) = \frac{1}{3}$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...