Saturday, August 11, 2018

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 68

Illustrate L'Hospital's Rule by graphing both $\displaystyle \frac{f(x)}{g(x)}$ and $\displaystyle \frac{f'(x)}{g'(x)}$ near $x = 0$ to see that these ratios have the same limit $x \to 0$. Alos calculate the exact value of the limit.


If $f(x) = 2 x \sin x$, then by using product rule...

$
\begin{equation}
\begin{aligned}
f'(x) &= 2 [ x(\cos x) + (1) \sin x]\\
\\
f'(x) &= 2x \cos x + 2 \sin x\\
\\
\text{Also, if } g(x) &= \sec x - 1 \text{ ,then}\\
\\
g'(x) &= \sec x \tan x
\end{aligned}
\end{equation}
$

So,
$\displaystyle \frac{f(x)}{g(x)} = \frac{2x \sin x}{\sec x - 1} \text{ and } \frac{f'(x)}{g'(x)} = \frac{2x \cos x + 2 \sin x}{\sec x \tan x}$




Based from the graph, the values of the $\displaystyle \lim_{x \to 0} \frac{f(x)}{g(x)} \approx \lim_{x \to 0} \frac{f'(x)}{g'(x)} \approx 4$
To find the exact value, we will use L'Hospital's Rule

For $\displaystyle \lim_{x \to 0} \frac{f(x)}{g(x)}$,


$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{2x \sin x}{\sec x - 1} &= \lim_{x \to 0} \frac{\frac{d}{dx} (2x \sin x)}{\frac{d}{dx}(\sec x -1) }\\
\\
&= \lim_{x \to 0} \frac{2x \cos x + 2 \sin x}{\sec x \tan x}
\end{aligned}
\end{equation}
$


If we evaluate the limit, we will still get an indeterminate form, so we must use apply the L'Hospital's Rule once more...
$ $


$
\begin{equation}
\begin{aligned}
&= \lim_{x \to 0} \frac{2[x (-\sin x) + (1) \cos x] + 2 \cos x}{\sec x (\sec^2 x) + (\sec x \tan x)(\tan x)}\\
\\
&= \lim_{x \to 0} \frac{-2x \sin x + 4 \cos x}{\sec^3 x + \sec x \tan^2 x}\\
\\
&= \frac{-2(0)\sin(0)+4\cos(0)}{\sec^3(0) + \sec (0) \tan^2 (0)}\\
\\
&= \frac{0 + 4(1)}{1+0}\\
\\
&= \frac{4}{1}\\
\\
&= 4
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...