Monday, August 6, 2018

Calculus: Early Transcendentals, Chapter 5, 5.2, Section 5.2, Problem 12

You need to evaluate the definite integral using the mid point rule, hence, first you need to evaluate Delta x:
Delta x = (b-a)/n => Delta x = (5-1)/4 = 1
You need to denote each of the 4 intervals, such that: [1,2],[2,3],[3,4],[4,5].
You need to evaluate the definite integral, such that:
int_1^5x^*e^(-x)dx = Delta x*(f((1+2)/2)+f((2+3)/2)+f((3+4)/2)+f((4+5)/2))
int_1^5x^*e^(-x)dx = 1*(f(3/2) + f(5/2) + f(7/2) + f(9/2))
int_1^5x^*e^(-x)dx = ((3/2)^2*e^(-3/2) + (5/2)^2*e^(-5/2) + (7/2)^2*e^(-7/2) + (9/2)^2*e^(-9/2))
int_1^5x^*e^(-x)dx = (9/4*e^(-3/2) + 25/4*e^(-5/2) + 49/4*e^(-7/2) + 81/4*e^(-9/2))
int_1^5x^*e^(-x)dx = (2.25*0.21 + 6.25*0.08+ 12.25*0.03 + 20.25*0.01)
int_1^5x^*e^(-x)dx = (0.4725 + 0.5+ 0.3675 + 2.025)
int_1^5x^*e^(-x)dx =3.3650
Hence, evaluating the definite integral, using the mid point rule, yields int_1^5x^*e^(-x)dx =3.3650.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...