Monday, March 5, 2018

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 36

Determine the $\displaystyle \lim_{x \to \infty} \frac{e^x - e^{-x}-2x}{x- \sin x}$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.

$\displaystyle \lim_{x \to \infty} \frac{e^x - e^{-x}-2x}{x- \sin x} = \frac{e^0 - e^{-0} - 2(0)}{0 - \sin (0)} = \frac{1-1-0}{0-0} = \frac{0}{0} \text{ Indeterminate}$

Thus by applying L'Hospital's Rule...
$\displaystyle \lim_{x \to \infty} \frac{e^x - e^{-x}-2x}{x- \sin x} = \lim_{x \to 0} \frac{e^x - e^{-x} (-1)-2}{1- \cos x} = \lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$

If we evaluate the limit, we will still get indeterminate form, so by applying L'Hospital's Rule once more...

$
\begin{equation}
\begin{aligned}
\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x} &= \lim_{x \to 0} \frac{e^x + e^{-x}(-1)}{-(-\sin x)}\\
\\
&= \lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x}
\end{aligned}
\end{equation}
$


Again, by applying L'Hospital's Rule, since the limit is still indeterminate...
$\displaystyle \lim_{x \to \infty} \frac{e^x-e^{-x}}{\sin x} = \lim_{x \to 0} \frac{e^x - e^{-x}(-1)}{\cos x} = \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos x} = \lim_{x \to 0} \frac{e^x + \frac{1}{e^x}}{\cos x} = \frac{e^0 + \frac{1}{e^0}}{\cos 0} = \frac{1+ \frac{1}{1}}{1} = \frac{2}{1} = 2$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...