Monday, March 26, 2018

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 46

Determine the integral $\displaystyle \int \frac{\cos x + \sin x }{\sin 2 x} dx$

$
\begin{equation}
\begin{aligned}
\int \frac{\cos x + \sin x }{\sin 2 x} dx &= \int \frac{\cos x + \sin x }{2 \sin x \cos x} dx \qquad \text{Apply Trigonometric Identity } \sin 2x = 2 \sin x \cos x\\
\\
\int \frac{\cos x + \sin x }{\sin 2 x} dx &= \int\left( \frac{\cancel{\cos x}}{2 \sin x \cancel{\cos x}} + \frac{\cancel{\sin x}}{2 \cancel{\sin x} \cos x} \right)dx\\
\\
\int \frac{\cos x + \sin x }{\sin 2 x} dx &= \int \left( \frac{1}{2\sin x} + \frac{1}{2\cos x} \right) dx\\
\\
\int \frac{\cos x + \sin x }{\sin 2 x} dx &= \int \left( \frac{1}{2} \csc x + \frac{1}{2} \sec x \right) dx\\
\\
\int \frac{\cos x + \sin x }{\sin 2 x} dx &= \frac{1}{2} \left[ -\ln (\csc x + \cot x) + \ln ( \sec x + \tan x) \right] + c \qquad \text{ or } \qquad \int \frac{\cos x + \sin x }{\sin 2 x} dx = \frac{1}{2} \left[ \ln(\sec x + \tan x) - \ln (\csc x + \cot x) \right] + c
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...