Monday, March 26, 2018

Single Variable Calculus, Chapter 5, Review Exercises, Section Review Exercises, Problem 16

Find the intergral $\displaystyle \int^2_0 y^2\sqrt{1+y^3}dy$, if it exists.
If we let $u = 1 + y^3$, then $du = 3y^2 dy$, so $\displaystyle y^2 dy = \frac{du}{3}$, when $ y = 0$, $u = 1$ and when $y = 2$, $u = 9$. Therefore,
$\displaystyle = \int^2_0 y^2 \sqrt{1+y^3} dy$
Make sure tha the upper and lower limits are also in terms of $u$, so...

$
\begin{equation}
\begin{aligned}
&= \int^{1+2^3}_{1+0^3} \sqrt{u} \left( \frac{du}{3} \right)\\
\\
&= \frac{1}{3} \int^9_1 \sqrt{u} du\\
\\
&= \frac{1}{3} \left[ \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right]^9_1\\
\\
&= \frac{1}{3} \left[ \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]^9_1\\
\\
&= \frac{1}{3} \left[ u^{\frac{3}{2}} \right]^9_1\\
\\
&= \frac{2}{9} \left[ 9^{\frac{3}{2}} - 1^{\frac{3}{2}} \right]\\
\\
&= \frac{2}{9} [ 27 - 1 ]\\
\\
&= \frac{52}{9}
\end{aligned}
\end{equation}
$

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...