Friday, March 16, 2018

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 60

a.) Given the function f(x)=x43x3+3x2x,0x2, use a graph to estimate the absolute maximum and minimum values.
b.) Use calculus to find the exact maximum and minimum values.

a.)



Based from the graph, the absolute maximum is approximately at f(2)2. While the absolute minimum is approximately at f(0.2)0.15

b.) To find the exact value, we take the derivative of the function
f(x)=ddx(x4)3ddx(x3)+3ddx(x2)ddx(x)
f(x)=4x39x2+6x1

When f(x)=0
0=4x39x2+6x1

By factoring we get,
(4x1)(x1)2=0

So,
x=14 and x=1

When 14,
f(14)=(14)43(14)3+3(14)2(14)
f(14)=0.1055

When x=1,
f(1)=(1)43(1)3+3(1)2(1)
f(1)=0

Also, we evaluate f(x) with the end points of x=0 and x=2
So when x=0,
f(0)=(0)43(0)3+3(0)2(0)
f(0)=0

when x=2,
f(2)=(2)43(2)3+3(2)2(2)
f(2)=2

Therefore, the exact value of the absolute maximum and minimum values are f(2)=2 and f(14)=0.1055 respectively.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...