Saturday, March 24, 2018

(du)/(dv) = uvsin(v^2) , u(0) = 1 Find the particular solution that satisfies the initial condition

An ordinary differential equation (ODE) has differential equation for a function with single variable. A first order ODE follows  .
In the given problem: (du)/(dv)=uvsin(v^2) ,  we may apply variable separable differential equation in a form of   .
Divide both sides by "u" and cross-multiply dv  to set it up as:
(du)/u=vsin(v^2) dv.
Apply direct integration: int(du)/u=int vsin(v^2) dv.
For the left sign, we follow the basic integration formula for logarithm:
int (du)/u = ln|u|
For the right side, we follow the basic integration formula for sine function:
Let: w=v^2 then dw = 2v*dv or (dw)/2 =v dv .
The integral becomes:
intvsin(v^2) dv= intsin(v^2) * vdv
                       =intsin(w) *(dw)/2
                      = (1/2) int sin(w) dw
                      = (1/2)*(-cos(w))+C
                      =-cos(w)/2+C
Plug-in w=v^2 on -cos(w)/2+C , we get:
intvsin(v^2) dv=-cos(v^2)/2+C
Combing the results, we get the general solution of differential equation as:
ln|u| = -cos(v^2)/2+C
 
To solve for the arbitrary constant (C) , apply the initial condition u(0)=1  onln|u| = -cos(v^2)/2+C :
ln|1| = -cos(0^2)/2+C
0 = -1/2+C
C = 0+1/2
C=1/2
Plug-in  C= 1/2 in ln|u| = -cos(v^2)/2+C , we get 
ln|u| = -cos(v^2)/2+1/2
 u = e^(-cos(v^2)/2+1/2)

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...